Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
C
COM6001M Computer Science Major Project
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
benjamin.clough
COM6001M Computer Science Major Project
Commits
4d251b55
Commit
4d251b55
authored
May 17, 2023
by
benjamin.clough
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Delete main.py
parent
ba6fbfa6
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
95 deletions
+0
-95
main.py
main.py
+0
-95
No files found.
main.py
deleted
100644 → 0
View file @
ba6fbfa6
#import ITSupportTicketPrioritisers.FromCSV_TFIDF_KerasCNN_ToCSV
#import ITSupportTicketPrioritisers.DefaultDatasets_TFIDF_KerasCNN_ToCSV
#import ITSupportTicketPrioritisers.NoDataset_TFIDF_KerasCNN
#import ITSupportTicketPrioritisers.DefaultDatasets_TFIDF_SKLearnLogReg_ToCSV
from
sklearn.preprocessing
import
LabelEncoder
from
keras.utils
import
to_categorical
from
custom_models.classifiers.DL_classifiers
import
KerasCNN
from
custom_models.feature_selection_extraction.algorithmic_feature_extraction_selection
import
TFIDF_Model
from
project_utilities.evaluators
import
DetailedConfusionMatrix
,
AccuracyPerClass
from
project_utilities.model_interaction
import
SKLearnModelFileInteraction
,
KerasModelFileInteraction
from
project_utilities
import
predictionformats
from
project_utilities.my_datasets
import
ITSupportDatasetBuilder
from
projectsettings
import
DefaultConfig
from
keras.preprocessing.text
import
Tokenizer
from
keras.utils
import
pad_sequences
,
to_categorical
from
keras.models
import
Sequential
from
keras.layers
import
Dense
,
Flatten
,
Embedding
,
Conv1D
,
MaxPooling1D
,
Dropout
,
LSTM
from
project_utilities
import
my_datasets
from
keras.callbacks
import
EarlyStopping
from
project_utilities
import
evaluators
import
pandas
as
pd
import
tensorflow
as
tf
from
tensorflow
import
keras
from
keras
import
layers
from
keras.models
import
Sequential
from
keras.layers
import
Dense
,
Dropout
from
keras.optimizers
import
Adam
from
keras.regularizers
import
l2
# Load Dataset
dataset
=
ITSupportDatasetBuilder
(
f
"{DefaultConfig.absolute_project_root_path()}/project_utilities/Datasets/ITSupport_Tickets.csv"
,
f
"{DefaultConfig.absolute_project_root_path()}/project_utilities/Datasets/ITSupport_Tickets_High_Prio.csv"
)
\
.
with_summaries_and_descriptions_combined
()
\
.
with_overall_priority_column
()
\
.
with_pre_processed_descriptions
()
\
.
build
()
.
corpus
# Load Pre-configured TF-IDF
TFIDF_model
=
TFIDF_Model
()
TFIDF_model
.
from_file
(
f
'{DefaultConfig.absolute_project_root_path()}/custom_models/preconfigured_models/tfidf_model.joblib'
,
SKLearnModelFileInteraction
())
# Split dataset into test and train
X_train_str
,
X_test_str
,
y_train
,
y_test
=
TFIDF_model
.
split_dataset
(
0.1
,
dataset
[
'Description'
]
.
tolist
(),
dataset
[
'Priority'
]
.
tolist
())
X_train_tfidf
=
TFIDF_model
.
vectorize_descriptions
(
X_train_str
)
X_test_tfidf
=
TFIDF_model
.
vectorize_descriptions
(
X_test_str
)
# Encode class labels
encoder
=
LabelEncoder
()
encoder
.
fit
([
'P5'
,
'P4'
,
'P3'
,
'P2'
,
'P1'
])
y_train
=
encoder
.
transform
(
y_train
)
y_val
=
encoder
.
transform
(
y_test
)
y_train
=
to_categorical
(
y_train
)
y_val
=
to_categorical
(
y_val
)
input_dim
=
X_train_tfidf
.
shape
[
1
]
model
=
Sequential
()
model
.
add
(
Dense
(
1024
,
activation
=
'relu'
,
input_shape
=
(
input_dim
,),
kernel_regularizer
=
l2
(
0.01
)))
model
.
add
(
Dropout
(
0.60
))
model
.
add
(
Dense
(
512
,
activation
=
'relu'
))
model
.
add
(
Dropout
(
0.50
))
model
.
add
(
Dense
(
256
,
activation
=
'relu'
))
model
.
add
(
Dropout
(
0.40
))
model
.
add
(
Dense
(
5
,
activation
=
'softmax'
))
# Compile model
opt
=
Adam
(
lr
=
0.001
)
model
.
compile
(
loss
=
'categorical_crossentropy'
,
metrics
=
[
'accuracy'
],
optimizer
=
opt
)
# Train model
from
keras.callbacks
import
EarlyStopping
# Define early stopping callback
early_stopping
=
EarlyStopping
(
monitor
=
'val_loss'
,
patience
=
5
)
model
.
fit
(
X_train_tfidf
,
y_train
,
epochs
=
50
,
batch_size
=
50
,
validation_data
=
(
X_test_tfidf
,
y_val
),
callbacks
=
[
early_stopping
])
model
.
save
(
'CNN_model_larger_regularised.h5'
)
print
(
"finished"
)
'''# Make predictions
encoded_predictions = CNN_model.make_predictions(X_test)
decoded_predictions = encoder.inverse_transform(encoded_predictions.argmax(axis=1))
# Represent accuracies
confusion_matrix = DetailedConfusionMatrix(decoded_predictions, y_test, ['P5', 'P4', 'P3', 'P2', 'P1'])
confusion_matrix.plot_confusion_matrix(fullscreen_requested=True)
apc = AccuracyPerClass(decoded_predictions, y_test, ['P5', 'P4', 'P3', 'P2', 'P1'])
apc.plot_confusion_matrix()'''
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment