Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
C
COM6001M Computer Science Major Project
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
benjamin.clough
COM6001M Computer Science Major Project
Commits
85abf3e9
Commit
85abf3e9
authored
May 17, 2023
by
benjamin.clough
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Delete dataset_prep.py
parent
4d251b55
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
47 deletions
+0
-47
dataset_prep.py
dataset_prep.py
+0
-47
No files found.
dataset_prep.py
deleted
100644 → 0
View file @
4d251b55
from
pandas
import
read_csv
,
DataFrame
,
concat
import
numpy
as
np
def
getDataset
():
ticket_data
=
getRawDataset
()
impacts
=
ticket_data
[
'Impact'
]
.
tolist
()
urgencies
=
ticket_data
[
'Urgency'
]
.
tolist
()
texts
=
ticket_data
[
'Description'
]
.
tolist
()
dict_corpus
=
{
'Descriptions'
:
[],
'Impacts'
:
[],
'Urgencies'
:
[]}
for
index
in
range
(
len
(
impacts
)):
if
not
(
impacts
[
index
]
is
np
.
nan
or
urgencies
[
index
]
is
np
.
nan
or
texts
[
index
]
is
np
.
nan
):
dict_corpus
[
'Descriptions'
]
.
append
(
texts
[
index
])
dict_corpus
[
'Impacts'
]
.
append
(
impacts
[
index
])
dict_corpus
[
'Urgencies'
]
.
append
(
urgencies
[
index
])
data_frame_corpus
=
DataFrame
(
dict_corpus
)
return
data_frame_corpus
def
getRawDataset
():
ticket_data_low_prio
=
read_csv
(
'project_utilities/Datasets/ITSupport_Tickets.csv'
)
ticket_data_high_prio
=
read_csv
(
'custom_models/ITSupport_Tickets_High_Prio.csv'
)
ticket_data_whole
=
concat
([
ticket_data_low_prio
,
ticket_data_high_prio
])
return
ticket_data_whole
def
convertToPriorities
(
dataset
:
DataFrame
or
dict
)
->
DataFrame
:
prio_to_num
=
{
'Low'
:
0
,
'Medium'
:
1
,
'High'
:
2
}
num_to_pnum
=
[
'P5'
,
'P4'
,
'P3'
,
'P2'
,
'P1'
]
pnums
=
[]
for
priorities
in
zip
(
dataset
[
'Impacts'
],
dataset
[
'Urgencies'
]):
numbered_priority
=
sum
([
prio_to_num
[
priorities
[
0
]],
prio_to_num
[
priorities
[
1
]]])
pnums
.
append
(
num_to_pnum
[
numbered_priority
])
dataset
[
'Priorities'
]
=
pnums
return
dataset
if
__name__
==
'__main__'
:
hi
=
getDataset
()
print
(
convertToPriorities
(
hi
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment