"# We'll start by splitting the data into training and testing, going with a 75% train, 25% test split, a 50/50 split, and a 25% train 75% test split.\n",
...
...
@@ -265,8 +268,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-24T19:57:31.266344Z",
"start_time": "2023-05-24T19:57:31.262708Z"
"end_time": "2023-05-25T14:28:54.827791Z",
"start_time": "2023-05-25T14:28:54.824178Z"
}
}
},
...
...
@@ -281,7 +284,7 @@
},
{
"cell_type": "code",
"execution_count": 269,
"execution_count": 315,
"outputs": [],
"source": [
"# First the Gaussian Bayes\n",
...
...
@@ -302,8 +305,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-24T19:57:31.331327Z",
"start_time": "2023-05-24T19:57:31.269108Z"
"end_time": "2023-05-25T14:28:54.895348Z",
"start_time": "2023-05-25T14:28:54.831677Z"
}
}
},
...
...
@@ -318,7 +321,7 @@
},
{
"cell_type": "code",
"execution_count": 270,
"execution_count": 316,
"outputs": [
{
"name": "stdout",
...
...
@@ -347,14 +350,14 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-24T19:57:31.340955Z",
"start_time": "2023-05-24T19:57:31.332522Z"
"end_time": "2023-05-25T14:28:54.906409Z",
"start_time": "2023-05-25T14:28:54.897176Z"
}
}
},
{
"cell_type": "code",
"execution_count": 271,
"execution_count": 317,
"outputs": [
{
"name": "stdout",
...
...
@@ -383,14 +386,14 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-24T19:57:31.410490Z",
"start_time": "2023-05-24T19:57:31.343315Z"
"end_time": "2023-05-25T14:28:54.991884Z",
"start_time": "2023-05-25T14:28:54.906637Z"
}
}
},
{
"cell_type": "code",
"execution_count": 272,
"execution_count": 318,
"outputs": [
{
"name": "stdout",
...
...
@@ -419,8 +422,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-24T19:57:31.621919Z",
"start_time": "2023-05-24T19:57:31.412912Z"
"end_time": "2023-05-25T14:28:55.205099Z",
"start_time": "2023-05-25T14:28:54.990989Z"
}
}
},
...
...
@@ -436,14 +439,87 @@
},
{
"cell_type": "code",
"execution_count": 272,
"outputs": [],
"source": [],
"execution_count": 319,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Best single model : K Nearest Neighbour 1st Model\n",
"Best overall algorithm : K Nearest Neighbour Algorithm\n"
]
},
{
"data": {
"text/plain": "<Figure size 640x480 with 2 Axes>",