"# We'll start by splitting the data into training and testing, going with a 75% train, 25% test split, a 50/50 split, and a 25% train 75% test split.\n",
...
...
@@ -329,8 +329,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-26T14:22:29.735985Z",
"start_time": "2023-05-26T14:22:29.718702Z"
"end_time": "2023-05-26T14:23:14.523589Z",
"start_time": "2023-05-26T14:23:14.474897Z"
}
}
},
...
...
@@ -345,7 +345,7 @@
},
{
"cell_type": "code",
"execution_count": 980,
"execution_count": 995,
"outputs": [],
"source": [
"# First the Gaussian Bayes\n",
...
...
@@ -378,8 +378,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-26T14:22:32.938039Z",
"start_time": "2023-05-26T14:22:29.736114Z"
"end_time": "2023-05-26T14:23:17.659417Z",
"start_time": "2023-05-26T14:23:14.482378Z"
}
}
},
...
...
@@ -394,7 +394,7 @@
},
{
"cell_type": "code",
"execution_count": 981,
"execution_count": 996,
"outputs": [
{
"name": "stdout",
...
...
@@ -423,14 +423,14 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-26T14:22:32.948030Z",
"start_time": "2023-05-26T14:22:32.939526Z"
"end_time": "2023-05-26T14:23:17.680394Z",
"start_time": "2023-05-26T14:23:17.658835Z"
}
}
},
{
"cell_type": "code",
"execution_count": 982,
"execution_count": 997,
"outputs": [
{
"name": "stdout",
...
...
@@ -459,14 +459,14 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-26T14:22:33.016620Z",
"start_time": "2023-05-26T14:22:32.950475Z"
"end_time": "2023-05-26T14:23:17.735405Z",
"start_time": "2023-05-26T14:23:17.674643Z"
}
}
},
{
"cell_type": "code",
"execution_count": 983,
"execution_count": 998,
"outputs": [
{
"name": "stdout",
...
...
@@ -495,22 +495,22 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-26T14:22:33.235186Z",
"start_time": "2023-05-26T14:22:33.018553Z"
"end_time": "2023-05-26T14:23:17.953286Z",
"start_time": "2023-05-26T14:23:17.737205Z"
}
}
},
{
"cell_type": "code",
"execution_count": 984,
"execution_count": 999,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.8711111111111111\n",
"0.8286985539488321\n",
"0.7648367952522255\n"
"0.8644444444444445\n",
"0.8487208008898777\n",
"0.7611275964391692\n"
]
}
],
...
...
@@ -531,22 +531,22 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-26T14:22:33.241329Z",
"start_time": "2023-05-26T14:22:33.236558Z"
"end_time": "2023-05-26T14:23:17.954572Z",
"start_time": "2023-05-26T14:23:17.953425Z"
}
}
},
{
"cell_type": "code",
"execution_count": 985,
"execution_count": 1000,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.98\n",
"0.9655172413793104\n",
"0.9443620178041543\n"
"0.9755555555555555\n",
"0.967741935483871\n",
"0.9428783382789317\n"
]
}
],
...
...
@@ -567,14 +567,14 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-26T14:22:33.286173Z",
"start_time": "2023-05-26T14:22:33.242848Z"
"end_time": "2023-05-26T14:23:17.991111Z",
"start_time": "2023-05-26T14:23:17.953635Z"
}
}
},
{
"cell_type": "code",
"execution_count": 986,
"execution_count": 1001,
"outputs": [
{
"name": "stdout",
...
...
@@ -603,8 +603,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-26T14:22:33.292378Z",
"start_time": "2023-05-26T14:22:33.287825Z"
"end_time": "2023-05-26T14:23:17.997469Z",
"start_time": "2023-05-26T14:23:17.992749Z"
}
}
},
...
...
@@ -628,7 +628,7 @@
},
{
"cell_type": "code",
"execution_count": 987,
"execution_count": 1002,
"outputs": [
{
"name": "stdout",
...
...
@@ -638,14 +638,6 @@
"Best overall algorithm : Support Vector Classification Algorithm\n",
"Best split ratio : 25% Test Split\n"
]
},
{
"data": {
"text/plain": "<Figure size 640x480 with 2 Axes>",