Commit c7de502c authored by Jonathan Poalses's avatar Jonathan Poalses

Wrote the overview

parent 746088ed
...@@ -14,7 +14,9 @@ ...@@ -14,7 +14,9 @@
"cell_type": "markdown", "cell_type": "markdown",
"source": [ "source": [
"## 1: Overview\n", "## 1: Overview\n",
"blah blah" "Being able to recognise the written word through the use of **Artificial Intelligence** (AI) is incredibly beneficial, as it allows menial jobs that brought nothing to peoples lives to be taken by AI instead, freeing those people to pursue something more meaningful. To be able to recognise handwriting specific to a single person is a difficult task, and to be able to recognise handwriting written by anyone is even more so, as such one should know that the algorithm and settings used to train the **Machine Learning** (ML) model are the best for the task.\n",
"\n",
"To solve this problem, three different ML classifier algorithms will be tested, each with 3 different splits of the data used for training and testing, resulting in nine different models. The results of this training can then be compared and contrasted, evaluating the whole process to not only determine which is the best single model, but also the best algorithm, and the best split of training and testing data."
], ],
"metadata": { "metadata": {
"collapsed": false "collapsed": false
...@@ -22,7 +24,7 @@ ...@@ -22,7 +24,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 525, "execution_count": 585,
"outputs": [], "outputs": [],
"source": [ "source": [
"# Importing pyplot so we can visualize things\n", "# Importing pyplot so we can visualize things\n",
...@@ -61,8 +63,8 @@ ...@@ -61,8 +63,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.077805Z", "end_time": "2023-05-26T10:45:04.126180Z",
"start_time": "2023-05-25T23:09:22.993181Z" "start_time": "2023-05-26T10:45:04.046288Z"
} }
} }
}, },
...@@ -78,13 +80,13 @@ ...@@ -78,13 +80,13 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 526, "execution_count": 586,
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": "array([0, 1, 2, ..., 8, 9, 8])" "text/plain": "array([0, 1, 2, ..., 8, 9, 8])"
}, },
"execution_count": 526, "execution_count": 586,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -99,8 +101,8 @@ ...@@ -99,8 +101,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.098977Z", "end_time": "2023-05-26T10:45:04.144643Z",
"start_time": "2023-05-25T23:09:22.999704Z" "start_time": "2023-05-26T10:45:04.052117Z"
} }
} }
}, },
...@@ -115,13 +117,13 @@ ...@@ -115,13 +117,13 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 527, "execution_count": 587,
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": "array([[[ 0., 0., 5., ..., 1., 0., 0.],\n [ 0., 0., 13., ..., 15., 5., 0.],\n [ 0., 3., 15., ..., 11., 8., 0.],\n ...,\n [ 0., 4., 11., ..., 12., 7., 0.],\n [ 0., 2., 14., ..., 12., 0., 0.],\n [ 0., 0., 6., ..., 0., 0., 0.]],\n\n [[ 0., 0., 0., ..., 5., 0., 0.],\n [ 0., 0., 0., ..., 9., 0., 0.],\n [ 0., 0., 3., ..., 6., 0., 0.],\n ...,\n [ 0., 0., 1., ..., 6., 0., 0.],\n [ 0., 0., 1., ..., 6., 0., 0.],\n [ 0., 0., 0., ..., 10., 0., 0.]],\n\n [[ 0., 0., 0., ..., 12., 0., 0.],\n [ 0., 0., 3., ..., 14., 0., 0.],\n [ 0., 0., 8., ..., 16., 0., 0.],\n ...,\n [ 0., 9., 16., ..., 0., 0., 0.],\n [ 0., 3., 13., ..., 11., 5., 0.],\n [ 0., 0., 0., ..., 16., 9., 0.]],\n\n ...,\n\n [[ 0., 0., 1., ..., 1., 0., 0.],\n [ 0., 0., 13., ..., 2., 1., 0.],\n [ 0., 0., 16., ..., 16., 5., 0.],\n ...,\n [ 0., 0., 16., ..., 15., 0., 0.],\n [ 0., 0., 15., ..., 16., 0., 0.],\n [ 0., 0., 2., ..., 6., 0., 0.]],\n\n [[ 0., 0., 2., ..., 0., 0., 0.],\n [ 0., 0., 14., ..., 15., 1., 0.],\n [ 0., 4., 16., ..., 16., 7., 0.],\n ...,\n [ 0., 0., 0., ..., 16., 2., 0.],\n [ 0., 0., 4., ..., 16., 2., 0.],\n [ 0., 0., 5., ..., 12., 0., 0.]],\n\n [[ 0., 0., 10., ..., 1., 0., 0.],\n [ 0., 2., 16., ..., 1., 0., 0.],\n [ 0., 0., 15., ..., 15., 0., 0.],\n ...,\n [ 0., 4., 16., ..., 16., 6., 0.],\n [ 0., 8., 16., ..., 16., 8., 0.],\n [ 0., 1., 8., ..., 12., 1., 0.]]])" "text/plain": "array([[[ 0., 0., 5., ..., 1., 0., 0.],\n [ 0., 0., 13., ..., 15., 5., 0.],\n [ 0., 3., 15., ..., 11., 8., 0.],\n ...,\n [ 0., 4., 11., ..., 12., 7., 0.],\n [ 0., 2., 14., ..., 12., 0., 0.],\n [ 0., 0., 6., ..., 0., 0., 0.]],\n\n [[ 0., 0., 0., ..., 5., 0., 0.],\n [ 0., 0., 0., ..., 9., 0., 0.],\n [ 0., 0., 3., ..., 6., 0., 0.],\n ...,\n [ 0., 0., 1., ..., 6., 0., 0.],\n [ 0., 0., 1., ..., 6., 0., 0.],\n [ 0., 0., 0., ..., 10., 0., 0.]],\n\n [[ 0., 0., 0., ..., 12., 0., 0.],\n [ 0., 0., 3., ..., 14., 0., 0.],\n [ 0., 0., 8., ..., 16., 0., 0.],\n ...,\n [ 0., 9., 16., ..., 0., 0., 0.],\n [ 0., 3., 13., ..., 11., 5., 0.],\n [ 0., 0., 0., ..., 16., 9., 0.]],\n\n ...,\n\n [[ 0., 0., 1., ..., 1., 0., 0.],\n [ 0., 0., 13., ..., 2., 1., 0.],\n [ 0., 0., 16., ..., 16., 5., 0.],\n ...,\n [ 0., 0., 16., ..., 15., 0., 0.],\n [ 0., 0., 15., ..., 16., 0., 0.],\n [ 0., 0., 2., ..., 6., 0., 0.]],\n\n [[ 0., 0., 2., ..., 0., 0., 0.],\n [ 0., 0., 14., ..., 15., 1., 0.],\n [ 0., 4., 16., ..., 16., 7., 0.],\n ...,\n [ 0., 0., 0., ..., 16., 2., 0.],\n [ 0., 0., 4., ..., 16., 2., 0.],\n [ 0., 0., 5., ..., 12., 0., 0.]],\n\n [[ 0., 0., 10., ..., 1., 0., 0.],\n [ 0., 2., 16., ..., 1., 0., 0.],\n [ 0., 0., 15., ..., 15., 0., 0.],\n ...,\n [ 0., 4., 16., ..., 16., 6., 0.],\n [ 0., 8., 16., ..., 16., 8., 0.],\n [ 0., 1., 8., ..., 12., 1., 0.]]])"
}, },
"execution_count": 527, "execution_count": 587,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -133,8 +135,8 @@ ...@@ -133,8 +135,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.099274Z", "end_time": "2023-05-26T10:45:04.145084Z",
"start_time": "2023-05-25T23:09:23.029118Z" "start_time": "2023-05-26T10:45:04.066397Z"
} }
} }
}, },
...@@ -159,7 +161,7 @@ ...@@ -159,7 +161,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 528, "execution_count": 588,
"outputs": [ "outputs": [
{ {
"data": { "data": {
...@@ -186,8 +188,8 @@ ...@@ -186,8 +188,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.268477Z", "end_time": "2023-05-26T10:45:04.283331Z",
"start_time": "2023-05-25T23:09:23.041900Z" "start_time": "2023-05-26T10:45:04.075539Z"
} }
} }
}, },
...@@ -202,13 +204,13 @@ ...@@ -202,13 +204,13 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 529, "execution_count": 589,
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": "array([[ 0., 0., 5., ..., 0., 0., 0.],\n [ 0., 0., 0., ..., 10., 0., 0.],\n [ 0., 0., 0., ..., 16., 9., 0.],\n ...,\n [ 0., 0., 1., ..., 6., 0., 0.],\n [ 0., 0., 2., ..., 12., 0., 0.],\n [ 0., 0., 10., ..., 12., 1., 0.]])" "text/plain": "array([[ 0., 0., 5., ..., 0., 0., 0.],\n [ 0., 0., 0., ..., 10., 0., 0.],\n [ 0., 0., 0., ..., 16., 9., 0.],\n ...,\n [ 0., 0., 1., ..., 6., 0., 0.],\n [ 0., 0., 2., ..., 12., 0., 0.],\n [ 0., 0., 10., ..., 12., 1., 0.]])"
}, },
"execution_count": 529, "execution_count": 589,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -221,20 +223,20 @@ ...@@ -221,20 +223,20 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.274159Z", "end_time": "2023-05-26T10:45:04.288267Z",
"start_time": "2023-05-25T23:09:23.271666Z" "start_time": "2023-05-26T10:45:04.285586Z"
} }
} }
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 530, "execution_count": 590,
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": "True" "text/plain": "True"
}, },
"execution_count": 530, "execution_count": 590,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -246,8 +248,8 @@ ...@@ -246,8 +248,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.278716Z", "end_time": "2023-05-26T10:45:04.293597Z",
"start_time": "2023-05-25T23:09:23.275847Z" "start_time": "2023-05-26T10:45:04.290103Z"
} }
} }
}, },
...@@ -282,7 +284,7 @@ ...@@ -282,7 +284,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 531, "execution_count": 591,
"outputs": [], "outputs": [],
"source": [ "source": [
"# We'll start by splitting the data into training and testing, going with a 75% train, 25% test split, a 50/50 split, and a 25% train 75% test split.\n", "# We'll start by splitting the data into training and testing, going with a 75% train, 25% test split, a 50/50 split, and a 25% train 75% test split.\n",
...@@ -293,8 +295,8 @@ ...@@ -293,8 +295,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.324546Z", "end_time": "2023-05-26T10:45:04.299839Z",
"start_time": "2023-05-25T23:09:23.282727Z" "start_time": "2023-05-26T10:45:04.296199Z"
} }
} }
}, },
...@@ -309,7 +311,7 @@ ...@@ -309,7 +311,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 532, "execution_count": 592,
"outputs": [], "outputs": [],
"source": [ "source": [
"# First the Gaussian Bayes\n", "# First the Gaussian Bayes\n",
...@@ -330,8 +332,8 @@ ...@@ -330,8 +332,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.364390Z", "end_time": "2023-05-26T10:45:04.363452Z",
"start_time": "2023-05-25T23:09:23.290016Z" "start_time": "2023-05-26T10:45:04.301313Z"
} }
} }
}, },
...@@ -346,7 +348,7 @@ ...@@ -346,7 +348,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 533, "execution_count": 593,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
...@@ -375,14 +377,14 @@ ...@@ -375,14 +377,14 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.378547Z", "end_time": "2023-05-26T10:45:04.372713Z",
"start_time": "2023-05-25T23:09:23.364622Z" "start_time": "2023-05-26T10:45:04.364786Z"
} }
} }
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 534, "execution_count": 594,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
...@@ -411,14 +413,14 @@ ...@@ -411,14 +413,14 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.482178Z", "end_time": "2023-05-26T10:45:04.443910Z",
"start_time": "2023-05-25T23:09:23.378011Z" "start_time": "2023-05-26T10:45:04.374509Z"
} }
} }
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 535, "execution_count": 595,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
...@@ -447,8 +449,8 @@ ...@@ -447,8 +449,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.724591Z", "end_time": "2023-05-26T10:45:04.681772Z",
"start_time": "2023-05-25T23:09:23.486829Z" "start_time": "2023-05-26T10:45:04.446851Z"
} }
} }
}, },
...@@ -464,7 +466,7 @@ ...@@ -464,7 +466,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 536, "execution_count": 596,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
...@@ -553,8 +555,8 @@ ...@@ -553,8 +555,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-25T23:09:23.963528Z", "end_time": "2023-05-26T10:45:04.947827Z",
"start_time": "2023-05-25T23:09:23.724208Z" "start_time": "2023-05-26T10:45:04.681929Z"
} }
} }
}, },
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment