Commit 51e152d4 authored by Jonathan Poalses's avatar Jonathan Poalses

Added GNB, KNeighbour, and SVC ML implementations

parent 88812fda
...@@ -2,12 +2,12 @@ ...@@ -2,12 +2,12 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 124, "execution_count": 128,
"metadata": { "metadata": {
"collapsed": true, "collapsed": true,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:10.395299Z", "end_time": "2023-05-18T12:11:19.523639Z",
"start_time": "2023-05-18T02:41:10.386829Z" "start_time": "2023-05-18T12:11:19.519384Z"
} }
}, },
"outputs": [], "outputs": [],
...@@ -21,7 +21,7 @@ ...@@ -21,7 +21,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 125, "execution_count": 129,
"outputs": [], "outputs": [],
"source": [ "source": [
"data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n", "data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n",
...@@ -30,14 +30,14 @@ ...@@ -30,14 +30,14 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:10.409258Z", "end_time": "2023-05-18T12:11:19.550492Z",
"start_time": "2023-05-18T02:41:10.397755Z" "start_time": "2023-05-18T12:11:19.526161Z"
} }
} }
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 126, "execution_count": 130,
"outputs": [], "outputs": [],
"source": [ "source": [
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)" "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)"
...@@ -45,14 +45,14 @@ ...@@ -45,14 +45,14 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:10.415818Z", "end_time": "2023-05-18T12:11:19.558891Z",
"start_time": "2023-05-18T02:41:10.412071Z" "start_time": "2023-05-18T12:11:19.553282Z"
} }
} }
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 127, "execution_count": 131,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
...@@ -71,8 +71,8 @@ ...@@ -71,8 +71,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:10.428856Z", "end_time": "2023-05-18T12:11:19.588742Z",
"start_time": "2023-05-18T02:41:10.417634Z" "start_time": "2023-05-18T12:11:19.561239Z"
} }
} }
} }
......
...@@ -2,12 +2,12 @@ ...@@ -2,12 +2,12 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 76, "execution_count": 80,
"metadata": { "metadata": {
"collapsed": true, "collapsed": true,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:18.336164Z", "end_time": "2023-05-18T12:11:21.691592Z",
"start_time": "2023-05-18T02:41:18.331276Z" "start_time": "2023-05-18T12:11:21.688239Z"
} }
}, },
"outputs": [], "outputs": [],
...@@ -21,7 +21,7 @@ ...@@ -21,7 +21,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 77, "execution_count": 81,
"outputs": [], "outputs": [],
"source": [ "source": [
"data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n", "data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n",
...@@ -30,14 +30,14 @@ ...@@ -30,14 +30,14 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:18.353544Z", "end_time": "2023-05-18T12:11:21.723895Z",
"start_time": "2023-05-18T02:41:18.336411Z" "start_time": "2023-05-18T12:11:21.697871Z"
} }
} }
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 78, "execution_count": 82,
"outputs": [], "outputs": [],
"source": [ "source": [
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)" "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)"
...@@ -45,14 +45,14 @@ ...@@ -45,14 +45,14 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:18.359671Z", "end_time": "2023-05-18T12:11:21.736415Z",
"start_time": "2023-05-18T02:41:18.356890Z" "start_time": "2023-05-18T12:11:21.734204Z"
} }
} }
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 79, "execution_count": 83,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
...@@ -71,8 +71,8 @@ ...@@ -71,8 +71,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:18.370524Z", "end_time": "2023-05-18T12:11:21.759108Z",
"start_time": "2023-05-18T02:41:18.362461Z" "start_time": "2023-05-18T12:11:21.740374Z"
} }
} }
} }
......
...@@ -2,12 +2,12 @@ ...@@ -2,12 +2,12 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 461, "execution_count": 469,
"metadata": { "metadata": {
"collapsed": true, "collapsed": true,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:46.523940Z", "end_time": "2023-05-18T12:11:14.027094Z",
"start_time": "2023-05-18T02:41:46.517479Z" "start_time": "2023-05-18T12:11:14.025377Z"
} }
}, },
"outputs": [], "outputs": [],
...@@ -21,7 +21,7 @@ ...@@ -21,7 +21,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 462, "execution_count": 470,
"outputs": [], "outputs": [],
"source": [ "source": [
"data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n", "data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n",
...@@ -30,14 +30,14 @@ ...@@ -30,14 +30,14 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:46.541875Z", "end_time": "2023-05-18T12:11:14.068427Z",
"start_time": "2023-05-18T02:41:46.524547Z" "start_time": "2023-05-18T12:11:14.028784Z"
} }
} }
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 463, "execution_count": 471,
"outputs": [], "outputs": [],
"source": [ "source": [
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)" "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)"
...@@ -45,14 +45,14 @@ ...@@ -45,14 +45,14 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:46.550473Z", "end_time": "2023-05-18T12:11:14.083705Z",
"start_time": "2023-05-18T02:41:46.544756Z" "start_time": "2023-05-18T12:11:14.077326Z"
} }
} }
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 464, "execution_count": 472,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
...@@ -71,8 +71,8 @@ ...@@ -71,8 +71,8 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-05-18T02:41:46.559888Z", "end_time": "2023-05-18T12:11:14.114268Z",
"start_time": "2023-05-18T02:41:46.551307Z" "start_time": "2023-05-18T12:11:14.092526Z"
} }
} }
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment