Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
Major Project machine
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
jonathan.poalses
Major Project machine
Commits
88812fda
Commit
88812fda
authored
May 18, 2023
by
Jonathan Poalses
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added GNB, KNeighbour, and SVC ML implementations
parent
5cd7726d
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
45 additions
and
279 deletions
+45
-279
nlp_gnb.ipynb
nlp_gnb.ipynb
+15
-93
nlp_kn.ipynb
nlp_kn.ipynb
+15
-93
nlp_svc.ipynb
nlp_svc.ipynb
+15
-93
No files found.
nlp_gnb.ipynb
View file @
88812fda
...
@@ -2,12 +2,12 @@
...
@@ -2,12 +2,12 @@
"cells": [
"cells": [
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
05
,
"execution_count": 1
24
,
"metadata": {
"metadata": {
"collapsed": true,
"collapsed": true,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:43.027132
Z",
"end_time": "2023-05-18T0
2:41:10.395299
Z",
"start_time": "2023-05-18T0
1:58:43.019344
Z"
"start_time": "2023-05-18T0
2:41:10.386829
Z"
}
}
},
},
"outputs": [],
"outputs": [],
...
@@ -21,7 +21,7 @@
...
@@ -21,7 +21,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
06
,
"execution_count": 1
25
,
"outputs": [],
"outputs": [],
"source": [
"source": [
"data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n",
"data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n",
...
@@ -30,14 +30,14 @@
...
@@ -30,14 +30,14 @@
"metadata": {
"metadata": {
"collapsed": false,
"collapsed": false,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:43.043055
Z",
"end_time": "2023-05-18T0
2:41:10.409258
Z",
"start_time": "2023-05-18T0
1:58:43.02672
5Z"
"start_time": "2023-05-18T0
2:41:10.39775
5Z"
}
}
}
}
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
07
,
"execution_count": 1
26
,
"outputs": [],
"outputs": [],
"source": [
"source": [
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)"
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)"
...
@@ -45,95 +45,14 @@
...
@@ -45,95 +45,14 @@
"metadata": {
"metadata": {
"collapsed": false,
"collapsed": false,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:43.066023
Z",
"end_time": "2023-05-18T0
2:41:10.415818
Z",
"start_time": "2023-05-18T0
1:58:43.054110
Z"
"start_time": "2023-05-18T0
2:41:10.412071
Z"
}
}
}
}
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 108,
"execution_count": 127,
"outputs": [],
"source": [
"from sklearn.naive_bayes import GaussianNB"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:43.066927Z",
"start_time": "2023-05-18T01:58:43.060309Z"
}
}
},
{
"cell_type": "code",
"execution_count": 109,
"outputs": [
{
"data": {
"text/plain": "GaussianNB()",
"text/html": "<style>#sk-container-id-14 {color: black;background-color: white;}#sk-container-id-14 pre{padding: 0;}#sk-container-id-14 div.sk-toggleable {background-color: white;}#sk-container-id-14 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-14 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-14 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-14 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-14 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-14 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-14 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-14 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-14 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-14 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-14 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-14 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-14 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-14 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-14 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-14 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-14 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-14 div.sk-item {position: relative;z-index: 1;}#sk-container-id-14 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-14 div.sk-item::before, #sk-container-id-14 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-14 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-14 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-14 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-14 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-14 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-14 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-14 div.sk-label-container {text-align: center;}#sk-container-id-14 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-14 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-14\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GaussianNB()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-14\" type=\"checkbox\" checked><label for=\"sk-estimator-id-14\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">GaussianNB</label><div class=\"sk-toggleable__content\"><pre>GaussianNB()</pre></div></div></div></div></div>"
},
"execution_count": 109,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gnb = GaussianNB()\n",
"gnb.fit((X_train).toarray(), y_train)"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:43.077601Z",
"start_time": "2023-05-18T01:58:43.067375Z"
}
}
},
{
"cell_type": "code",
"execution_count": 110,
"outputs": [],
"source": [
"predicted=gnb.predict((X_test).toarray())\n",
"expected = y_test"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:43.082487Z",
"start_time": "2023-05-18T01:58:43.078846Z"
}
}
},
{
"cell_type": "code",
"execution_count": 111,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"75.00%\n"
]
}
],
"source": [
"wrong=[ (p, e) for (p, e) in zip(predicted, expected) if p != e]\n",
"print(f'{(len(expected) - len(wrong)) / len(expected):.2%}')"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:43.093743Z",
"start_time": "2023-05-18T01:58:43.084280Z"
}
}
},
{
"cell_type": "code",
"execution_count": 112,
"outputs": [
"outputs": [
{
{
"name": "stdout",
"name": "stdout",
...
@@ -144,13 +63,16 @@
...
@@ -144,13 +63,16 @@
}
}
],
],
"source": [
"source": [
"from sklearn.naive_bayes import GaussianNB\n",
"gnb = GaussianNB()\n",
"gnb.fit((X_train).toarray(), y_train)\n",
"print(f'{gnb.score((X_test).toarray(), y_test): .2%}')"
"print(f'{gnb.score((X_test).toarray(), y_test): .2%}')"
],
],
"metadata": {
"metadata": {
"collapsed": false,
"collapsed": false,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:43.109002
Z",
"end_time": "2023-05-18T0
2:41:10.428856
Z",
"start_time": "2023-05-18T0
1:58:43.087892
Z"
"start_time": "2023-05-18T0
2:41:10.417634
Z"
}
}
}
}
}
}
...
...
nlp_kn.ipynb
View file @
88812fda
...
@@ -2,12 +2,12 @@
...
@@ -2,12 +2,12 @@
"cells": [
"cells": [
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
57
,
"execution_count":
76
,
"metadata": {
"metadata": {
"collapsed": true,
"collapsed": true,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:46.040817
Z",
"end_time": "2023-05-18T0
2:41:18.336164
Z",
"start_time": "2023-05-18T0
1:58:46.036097
Z"
"start_time": "2023-05-18T0
2:41:18.331276
Z"
}
}
},
},
"outputs": [],
"outputs": [],
...
@@ -21,7 +21,7 @@
...
@@ -21,7 +21,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
58
,
"execution_count":
77
,
"outputs": [],
"outputs": [],
"source": [
"source": [
"data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n",
"data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n",
...
@@ -30,14 +30,14 @@
...
@@ -30,14 +30,14 @@
"metadata": {
"metadata": {
"collapsed": false,
"collapsed": false,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:46.08331
4Z",
"end_time": "2023-05-18T0
2:41:18.35354
4Z",
"start_time": "2023-05-18T0
1:58:46.042782
Z"
"start_time": "2023-05-18T0
2:41:18.336411
Z"
}
}
}
}
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
59
,
"execution_count":
78
,
"outputs": [],
"outputs": [],
"source": [
"source": [
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)"
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)"
...
@@ -45,95 +45,14 @@
...
@@ -45,95 +45,14 @@
"metadata": {
"metadata": {
"collapsed": false,
"collapsed": false,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:46.099054
Z",
"end_time": "2023-05-18T0
2:41:18.359671
Z",
"start_time": "2023-05-18T0
1:58:46.093034
Z"
"start_time": "2023-05-18T0
2:41:18.356890
Z"
}
}
}
}
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 60,
"execution_count": 79,
"outputs": [],
"source": [
"from sklearn.neighbors import KNeighborsClassifier"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:46.103466Z",
"start_time": "2023-05-18T01:58:46.099846Z"
}
}
},
{
"cell_type": "code",
"execution_count": 61,
"outputs": [
{
"data": {
"text/plain": "KNeighborsClassifier()",
"text/html": "<style>#sk-container-id-8 {color: black;background-color: white;}#sk-container-id-8 pre{padding: 0;}#sk-container-id-8 div.sk-toggleable {background-color: white;}#sk-container-id-8 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-8 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-8 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-8 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-8 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-8 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-8 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-8 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-8 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-8 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-8 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-8 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-8 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-8 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-8 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-8 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-8 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-8 div.sk-item {position: relative;z-index: 1;}#sk-container-id-8 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-8 div.sk-item::before, #sk-container-id-8 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-8 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-8 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-8 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-8 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-8 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-8 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-8 div.sk-label-container {text-align: center;}#sk-container-id-8 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-8 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-8\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>KNeighborsClassifier()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-8\" type=\"checkbox\" checked><label for=\"sk-estimator-id-8\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">KNeighborsClassifier</label><div class=\"sk-toggleable__content\"><pre>KNeighborsClassifier()</pre></div></div></div></div></div>"
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"knc = KNeighborsClassifier()\n",
"knc.fit(X_train, y_train)"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:46.117344Z",
"start_time": "2023-05-18T01:58:46.110609Z"
}
}
},
{
"cell_type": "code",
"execution_count": 62,
"outputs": [],
"source": [
"predicted=knc.predict(X_test)\n",
"expected = y_test"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:46.122772Z",
"start_time": "2023-05-18T01:58:46.118837Z"
}
}
},
{
"cell_type": "code",
"execution_count": 63,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"65.00%\n"
]
}
],
"source": [
"wrong=[ (p, e) for (p, e) in zip(predicted, expected) if p != e]\n",
"print(f'{(len(expected) - len(wrong)) / len(expected):.2%}')"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:46.126935Z",
"start_time": "2023-05-18T01:58:46.124164Z"
}
}
},
{
"cell_type": "code",
"execution_count": 64,
"outputs": [
"outputs": [
{
{
"name": "stdout",
"name": "stdout",
...
@@ -144,13 +63,16 @@
...
@@ -144,13 +63,16 @@
}
}
],
],
"source": [
"source": [
"from sklearn.neighbors import KNeighborsClassifier\n",
"knc = KNeighborsClassifier()\n",
"knc.fit(X_train, y_train)\n",
"print(f'{knc.score(X_test, y_test): .2%}')"
"print(f'{knc.score(X_test, y_test): .2%}')"
],
],
"metadata": {
"metadata": {
"collapsed": false,
"collapsed": false,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:46.132578
Z",
"end_time": "2023-05-18T0
2:41:18.370524
Z",
"start_time": "2023-05-18T0
1:58:46.128149
Z"
"start_time": "2023-05-18T0
2:41:18.362461
Z"
}
}
}
}
}
}
...
...
nlp_svc.ipynb
View file @
88812fda
...
@@ -2,12 +2,12 @@
...
@@ -2,12 +2,12 @@
"cells": [
"cells": [
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 4
38
,
"execution_count": 4
61
,
"metadata": {
"metadata": {
"collapsed": true,
"collapsed": true,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:39.308492
Z",
"end_time": "2023-05-18T0
2:41:46.523940
Z",
"start_time": "2023-05-18T0
1:58:39.30238
9Z"
"start_time": "2023-05-18T0
2:41:46.51747
9Z"
}
}
},
},
"outputs": [],
"outputs": [],
...
@@ -21,7 +21,7 @@
...
@@ -21,7 +21,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 4
39
,
"execution_count": 4
62
,
"outputs": [],
"outputs": [],
"source": [
"source": [
"data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n",
"data = vectorizer.fit_transform(edn.loads(open(\"sample_data.txt\").read()))\n",
...
@@ -30,14 +30,14 @@
...
@@ -30,14 +30,14 @@
"metadata": {
"metadata": {
"collapsed": false,
"collapsed": false,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:39.34012
5Z",
"end_time": "2023-05-18T0
2:41:46.54187
5Z",
"start_time": "2023-05-18T0
1:58:39.312108
Z"
"start_time": "2023-05-18T0
2:41:46.524547
Z"
}
}
}
}
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 4
40
,
"execution_count": 4
63
,
"outputs": [],
"outputs": [],
"source": [
"source": [
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)"
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)"
...
@@ -45,95 +45,14 @@
...
@@ -45,95 +45,14 @@
"metadata": {
"metadata": {
"collapsed": false,
"collapsed": false,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:39.351322
Z",
"end_time": "2023-05-18T0
2:41:46.550473
Z",
"start_time": "2023-05-18T0
1:58:39.3414
56Z"
"start_time": "2023-05-18T0
2:41:46.5447
56Z"
}
}
}
}
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 441,
"execution_count": 464,
"outputs": [],
"source": [
"from sklearn.svm import SVC"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:39.368348Z",
"start_time": "2023-05-18T01:58:39.355705Z"
}
}
},
{
"cell_type": "code",
"execution_count": 442,
"outputs": [
{
"data": {
"text/plain": "SVC()",
"text/html": "<style>#sk-container-id-46 {color: black;background-color: white;}#sk-container-id-46 pre{padding: 0;}#sk-container-id-46 div.sk-toggleable {background-color: white;}#sk-container-id-46 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-46 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-46 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-46 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-46 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-46 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-46 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-46 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-46 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-46 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-46 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-46 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-46 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-46 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-46 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-46 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-46 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-46 div.sk-item {position: relative;z-index: 1;}#sk-container-id-46 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-46 div.sk-item::before, #sk-container-id-46 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-46 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-46 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-46 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-46 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-46 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-46 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-46 div.sk-label-container {text-align: center;}#sk-container-id-46 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-46 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-46\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>SVC()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-46\" type=\"checkbox\" checked><label for=\"sk-estimator-id-46\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">SVC</label><div class=\"sk-toggleable__content\"><pre>SVC()</pre></div></div></div></div></div>"
},
"execution_count": 442,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"svc = SVC(gamma='scale')\n",
"svc.fit(X_train, y_train)"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:39.384555Z",
"start_time": "2023-05-18T01:58:39.371641Z"
}
}
},
{
"cell_type": "code",
"execution_count": 443,
"outputs": [],
"source": [
"predicted=svc.predict(X_test)\n",
"expected = y_test"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:39.393847Z",
"start_time": "2023-05-18T01:58:39.386304Z"
}
}
},
{
"cell_type": "code",
"execution_count": 444,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"55.00%\n"
]
}
],
"source": [
"wrong=[ (p, e) for (p, e) in zip(predicted, expected) if p != e]\n",
"print(f'{(len(expected) - len(wrong)) / len(expected):.2%}')"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T01:58:39.405299Z",
"start_time": "2023-05-18T01:58:39.395221Z"
}
}
},
{
"cell_type": "code",
"execution_count": 445,
"outputs": [
"outputs": [
{
{
"name": "stdout",
"name": "stdout",
...
@@ -144,13 +63,16 @@
...
@@ -144,13 +63,16 @@
}
}
],
],
"source": [
"source": [
"from sklearn.svm import SVC\n",
"svc = SVC(gamma='scale')\n",
"svc.fit(X_train, y_train)\n",
"print(f'{svc.score(X_test, y_test): .2%}')"
"print(f'{svc.score(X_test, y_test): .2%}')"
],
],
"metadata": {
"metadata": {
"collapsed": false,
"collapsed": false,
"ExecuteTime": {
"ExecuteTime": {
"end_time": "2023-05-18T0
1:58:39.413605
Z",
"end_time": "2023-05-18T0
2:41:46.559888
Z",
"start_time": "2023-05-18T0
1:58:39.407510
Z"
"start_time": "2023-05-18T0
2:41:46.551307
Z"
}
}
}
}
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment